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ABSTRACT 

We formula te  and  prove a foliated version of a t heo rem of Besson, 

Courtois ,  and  Gallot es tabl ishing the  min imal  en t ropy rigidity of  nega- 

tively curved locally symmet r i c  spaces.  One  corollary is a foliated version 

of Mostow's  rigidity theorem.  

1. I n t r o d u c t i o n  

One version of the minimal entropy rigidity theorem of Besson, Courtois, and 

Gallot says that a compact negatively curved locally symmetric space uniquely 

minimizes normalized volume growth entropy among all negatively curved mani- 

folds homotopy equivalent to it. More precisely, let (X, go) be a compact nega- 

tively curved locally symmetric space of dimension n _> 3, and let g be any 

negatively curved metric on a compact space Y homotopy equivalent to X. For 

any y C 17", we define the quantities, 

/~(g) = liinsup 1 log(VolB(y,R)) and h(g) = liminf 1 R ~  R R-~oo -R log(VolB(y,R)), 
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where B(y, R) is the geodesic ball of radius R about y in Y. The quantities 

h(g) and h(g) are independent of the choice of y e ~'. Manning [Man79] showed 

that / t (g)  = h(g) and this quantity is called the vo lume  g r o wt h  e n t r o p y  h(g). 
Minimal entropy rigidity then states 

THEOREM 1 (Besson-Courtois-Gallot [BVG96]): With the above notations, 

h(go) ~ Vol(X, dgo) <<_ h(g) '~ Vol(Y, dg), 

and equality is achieved if and only if g is homothetic to go. 

In this paper we prove a foliated version of Theorem 1. We let N and M be 

compact topological manifolds supporting continuous foliations ~-N and 9rM by 

leaves which are smooth Riemannian manifolds, and such that the metrics on 

the leaves vary continuously in the transverse direction. The role of the locally 

symmetric space is played by (M, ~-M), for which we suppose that the leaves 

are locally isometric to n-dimensional symmetric spaces of negative curvature, 

n _> 3. (By continuity of the metrics these are all locally homothetic to a fixed 

symmetric space (2(, go).) 
For the foliation (N, 9~N) we assume that the leaves (L, gL) are strictly nega- 

tively curved, and satisfy a stronger condition (that they are Patterson-Sullivan 

manifolds) which we define below. Finally, the role of the homotopy equivalence 

is played by a leaf-preserving homeomorphism 

f:  (N, S'N) -+ (M, 5rM) 

which is leafwise C 1 with transversally continuous leafwise derivatives. (Note 

that  we do not assume that  f is transversally differentiable.) 
Our first step is to introduce a class of manifolds which we call P a t t e r s o n -  

Sul l ivan mani fo lds .  Consider a negatively curved manifold (L, gz) and equip 

its universal cover L with a un i fo rm  t i l ing by domains of bounded diameter 

and volume (see §2 for the precise definition). Compact manifolds are prime 

examples to keep in mind, where the tiling is by Dirichlet fundamental domains. 

A (not necessarily compact) leaf of a continuous foliation of a compact space also 

provides a natural example, where the tiling is by the lifts to ], of the foliation 

plaques (see §2 for definitions about foliations). 

Using the tiling, on L we construct Patterson-Sullivan measures vz, one for 
each x E i,. Even if [Z(gn) # h(gn), there is a distinguished number h(gL) 
satisfying h(gL) <_ h(gL) <_ [Z(gL) which we call the vo lume  g r o w t h  en t ropy .  
Fixing a base point p E ~,, we say that L is a P a t t e r s o n - S u l l i v a n  man i fo ld  if, 
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for x E L, the total mass at infinity uz (0/~) of the Patterson-Sullivan measures 

as a function of d(p, x) has exponential growth/decay less than h(gL) (see §2 for 

the precise definition). 

If  ], is cocompact, then u~(OL) is equivariant with respect to the action of the 

fundamental group, so is actually bounded away from zero and infinity. However, 

when L is a general noncompact space with an arbitrary uniform tiling, the 

irregularity of the tiles prevents a priori bounds on u~(OL). 

Now let L be a (not necessarily compact) Patterson-Sullivan manifold and 

f :  L --+ X a homeomorphism from L to a negatively curved manifold. Suppose 

some lift ] :  ], --+ )~ is a quasi-isometry. (In §4 we show that  this is true when 

L is a leaf of a compact foliation and f is the restriction to L of the foliation 

homeomorphism.) As in [BCG96], we take the barycenter of the pushforward 

Patterson-Sullivan measures and construct a natural  map /}: L --~ )~, which 

descends to the quotients. Our first result, which is is the key to our foliated 

version of Theorem 1, is 

THEOREM 2: The map F is a proper surjection. 

When L has a compact quotient (e.g., in Theorem 1), then Theorem 2 is a 

trivial consequence of degree theory, since F descends to a map F on the compact 

quotients which is homotopic to the original homotopy equivalence f :  L-~X .  In 

the foliation case we are interested in, we apply Theorem 2 to each leaf and prove 

a global foliated coarea formula which allows us to prove the Main Theorem. 

For any metric space (L, gL), we may define the quantities tt(gL) a n d  h__(gL) as 

before. We define the volume growth entropy h(gL) as 

{ I/0 ) h(gn) = inf s > 0  e -S tVo lS (x , t )d t  < eo , 

where S(x,  t) is the sphere of radius t about x in the universal cover ], of L. This 

quantity is independent of x C L and so, when L is a leaf of the foliation on N,  

L ~-~ h(gL) is a function from N to [0, eel which is constant on each leaf. In fact, 

by volume comparison with constant negatively curved spaces we observe that  

h(gL) must lie in the range [(n - 1)a, (n - 1)hi, when the sectional curvatures of 

L are bounded between [-b 2, -a2]. 

The function h(gL) is also measurable on N because the transverse continuity 

of the leafwise metrics implies that  for each R, the function 

fo R x ~4 e -S tVo lS (x , t )d t  
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is continuous on N. On (M, JrM) the entropy is constant and we denote it by 

h(go). Since the exponential volume growth of balls is governed by the exponen- 

tial growth of spheres, we may replace B(y,  R) with S(y, R) in the definition of 

h(gL) and h(gL) without change. Then from the definition of h(gL) it is clear 

that h(gn) <_ h(gL) <_ ft(gL). 
Equip the foliation (N, $'g) with any choice of finite transverse holonomy quasi- 

invariant measure u (see Hurder [Hur94] or Zimmer [Zim82] for the definition and 

existence). Holonomy quasi-invariance simply means that the push forward of 

u under any holonomy map is in the same measure class as u. This measure u 

provides us with a global finite measure # g  on N which is locally a product of u 

with the Riemannian volumes dg L of the leaves L. 

MAIN THEOREM: Let ( N, fiN) be a continuous foliation of the compact manifold 

N such that u-almost every leaf is a Patterson-Sullivan manifold. Suppose that 

f :  (N, 5rN)~(M,  Jrg ) is a foliation-preserving homeomorphism, leafwise C 1 with 

transversally continuous leafwise derivatives, and that f .p-almost  every leaf of 

(M, JrM ) is a rank one locally symmetric space. Then there exists a finite measure 

#M on M which is locally the product of dg o with a transverse quasi-invariant 

measure Uo such that 

and equality holds if  and only i f  v-almost every leaf (L, gL) is homothetic to its 

image ( f  (L), go). 

When the foliation admits a holonomy invariant measure u, then we may take 

uo = f , v .  When u is just holonomy quasi-invariant however, then uo is the push 

forward of u under the natural map F defined below. 

When the foliation (N, .T'N) is ergodic with respect to u, then the entropy 

function h(gL) = h(g) is constant on N, and we get the 

COROLLARY 1.1: Under the same assumptions as in the main theorem, if  

(N, JrN) is ergodic, then h(go) n Vol(M, JAM) ~ h(g) n Vol(N, #N) with equality 

i f  and only i f  u-almost every leaf (L, gL) is homothetic to ( f (L) ,  go). 

Remarks.: 

1. If (N, $ 'g) and (M, S'M) are foliations such that almost every leaf is compact 

or simply connected, then the requirement that the homeomorphism f be 

leafwise C 1 can be dropped. In particular, if the foliations have just one 

leaf and dim N ~ 3, 4, any homotopy equivalence induces a homeomorphism 
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between N and M (see [FJ93]). Therefore, when dim N ~ 3, 4, Corollary 

1.1 recovers Theorem 1. 

2. In fact, Theorem 1 is true in greater generality, namely when the metric 

g on Y is any (not necessarily negatively curved) metric and when X and 

Y are related by a map of non-zero degree (see [BCG96]). We conjecture 

that  a foliated version of this more general theorem is also true, and would 

yield interesting results about foliations. 

3. In Section 2.1 we give examples of classes of foliations (N, ~-N) where al- 

most every leaf is a Patterson Sullivan manifold. I t  is also an open question 

whether this assumption is unnecessary. I t  seems that  the "recurring ge- 

ometry" imposed on leaves of compact foliations by the recurrence of the 

leaves inside the ambient space might already give strong bounds on the 

mass at infinity of Patterson Sullivan measures. 

The outline for the paper is as follows. In §2 we construct Patterson-Sullivan 

measures on Patterson Sullivan manifolds. In §3 we describe the construction of 

the natural  map on such manifolds, and prove Theorem 2. In §4 we show that,  

in our foliation case, any lift ] to the universal covers of the leaves is a quasi- 

isometry, so that  we are in a position to apply Theorem 2 to each leaf. In §5 

we prove a foliated coarea formula which, together with a crucial estimate from 

[BCG96] on the Jacobian of the natural map, allows us to derive the main theo- 

rem. Lastly, in §6 we present some applications of the Main Theorem, including 

a foliated version of Mostow's rigidity theorem. 

2. P a t t e r s o n - S u l l i v a n  m e a s u r e s  a n d  m a n i f o l d s  

Let (L, gL) be a negatively curved manifold. 

Definition 2.h A countable parti t ion {Dj}~_ 1 of the universal cover /~ is a 

u n i f o r m  t i l ing  if there exist constants C1 > 1 and C2 > 0 such that  for all j ,  

1. C11 < Vol(Dj) < C1, and 

2. D i a m D j  < C2. 

Choosing one point dj from each Dj,  we call the collection {dj} a l a t t i c e  A 

associated to the tiling. 

We point out that  uniform tilings always exist for negatively curved manifolds 

since we do not require the tiles to have bounded inscribed radius. 

Let us now be specific about how a leaf in a compact foliation has a naturally 

defined uniform tiling. For this we recall some definitions for foliations (from 
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[Hur94]). An n-dimensional continuous foliation 9 v of codimension q on the para- 

compact manifold N '~+q is a parti t ion of N n+q into a set of C ~ manifolds, the 

leaves ,  of dimension n with some additional structure. Namely, if Di(r) denotes 

the open ball of radius r in ~i ,  we require that  

1. there exist a uniformly locally-finite open cover {U~}scA of N n+q, 

2. there exist homeomorphisms ¢~: Ua--+Dq(1) × D'~(1) which extend to 

homeomorphisms ~b~: Us--~Dq(2) × Dn(2) where Us contains the closure of 

Us, and 

3. for each x C Dq(2), the set ¢~1({x} × Dn(2)) is the connected component 

containing ¢~1({x} × {0}) of the intersection o f / J s  with the leaf through 

× {0}). 

Such a set of charts {Us, Cs}seA is a r e g u l a r  fo l i a t ion  a t l a s  for ~-. The 

topological disks ¢~1({x} x Dn(1)) are p laques ,  and the Us are f low boxes .  

Restricting our attention to the manifold N, compactness allows us to choose 

an atlas consisting of finitely many flow boxes {Ui}i=l for ~ g .  A t ransversa l  

is a Borel subset T C N which intersects each leaf of the foliation in at most a 

countable set. Given an atlas it is natural  to choose transversals which intersect 

each plaque exactly once. We can always do this by taking loca l  c ross  sec- 

t i ons  Ti = ¢ ~ ( D q  x {x}) for any x C D n from which we obtain a c o m p l e t e  

t ransversa l  T = U~ Ti. 

Let (L, gL) be a leaf of (N, heN), L its universal cover, and 7r: L--+L the covering 

map. Since the metrics on the leaves vary continuously in the foliation, the 

leafwise plaque diameters are globally bounded from above and below away from 

zero, and similarly their volumes as well. These plaques form a locally finite open 

cover of L, so we may choose a partition of L subordinate to this cover whose 

lift forms a uniform tiling of the universal cover ]~. For the lattice we take the 

natural  choice, A - -  71 - -1  (T N L), the lifts to ], of the points in the leaf L where 

the transversal T meets L. 

Returning to the more general discussion of manifolds with a given uniform 

tiling and associated lattice A, we now construct the Patterson Sullivan measures 

on them. Fix a basepoint p E L and let d(x, y) be the distance function on L. 

Consider the Poincar~ series 

gs(x) = q(d(x, y))e-sd(x,y), 
yEA 

where q(t): R+-+R + is any nondecreasing function (to be determined shortly) 
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such tha t  for any e > 0 and d > 0 there is an r > 0 such tha t  

q(r + d) 1 
q(r) < 

The corresponding t runcated  series for R > 0 will be denoted by, 

g~(x, R) = E q(d(x, y))e -sd(x'y). 
yEAAB(x,R) 

By the assumptions on the diameter and volume of each tile, for all R > 0 and 

all s > 0, 

c~- le  -sC~ f q(d(x, y))e-Sd(x'Y)dgL(y) < gs(X, R) 
JB (x,R) 

(2.1) 
<- CleSc  q(d(x, y))e-Sd(x'Y)dgL(y). 

Since the integrals and g~(x, R) are non-decreasing in R, we can take limits to 

obtain 

Cfle -sc: f ~  q(t)e -~ Vol(S(x, t))dt 
(2.2) JO 

/5 <_ g~(x) <_ Cle ~c~ q(t)e-StVol(S(x,t))dt. 

By the definition of h(gL), (2.2) shows that  gs(x) diverges for s < h(gL) and 

converges for s > h(gr) .  Pat terson ([Patterson76]) showed tha t  for any Poincar~ 

series there is a choice of a weighting function q such that  9~(x) diverges at 

s = h(gL); we make this choice of q. Hence the above integrals also diverge at 

s = h(gL). 

For s > h (g / )  we form the measures 

~-~yei q(d(x, y) )e-sd(~'Y)Sy 

on L where (i v is the Dirac delta measure at y. For one x E L we may  take a 

weak limit of  these measures along a fixed sequence si-+h(gL) + to obtain the 

measure 

u~ = l i m  u~.  
s i ~  h(gL) + 

Since the series 9h(gL)(X) diverges it follows tha t  the measure uz is suppor ted  

on a subset of the boundary  0[,. As noted by Sullivan [Su179], for any other 
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y E L, the same weak limit also converges to a measure uy, which is absolutely 

continuous with respect to vx. To see this we compute the Radon-Nikodym 

derivative explicitly. 

For any ~ ~ 0L which is in the support ofvx, let {B~}0<~<l be a family of open 

sets in L U 0L such that  B~ C Be whenever c < d, N~>0B~ = {~} and B~ M 0], is 

open in OL for all c. Hence ux(B~) > 0 for all x E ]- and e > 0. It  follows from 

the Radon-Nikodym theorem that  

(~) = lira lim 
, - ,0 s,-~ h(gL)+ v~' (B, )  

--- lim lim ~ e a n B ,  q(d(x, z))e -s~d(x'~) 
,~o s ,~ h(gL) + ~zeAnBo q( d(y, z) )e -s'd(u,z) " 

Since B~ contracts to ~ and by definition of the Busemann function B(x,  y, ~), for 

each z c A M Bc we have d(y, z) -- d(x, z) + B(x,  y, ~) + 5(z, ~) where ]5(z, e)l--~0 

as c-+0 for all z C A M Be. Plugging this into the previous equation above and 

using the properties of the weighting function q, we obtain 

dv~ 
(2.3) duy (~) = s,-~h(aL) + l i m  e s'B(~'y'~) 

= eh(gL)B(x,Y,~). 

By construction, the measures vx are equivariant under any covering isometries 

3, of the leaf: ")',vx = v~x. 

Letting c(x) = vx(OL,) be the total mass of vx, we define the n o r m a l i z e d  

P a t t e r s o n - S u l l i v a n  m e a s u r e s  to be the probability measures 

vx 

#~ - c ( z ) "  

They are equivariant under isometries and satisfy 

e(y) ~h(gL)B(x,y,~) (2.4) d#x (~) = c ~  " 
dtty 

Definition 2.2: Let (L, gL) be a negatively curved manifold, A a lattice associ- 

ated to a uniform tiling of L, and u~ the associated Patterson-Sullivan measures. 

L is a Patterson-Sullivan manifold if 

lira sup I l°g c(x) 
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It  is easy to check that  this definition is independent of the choice of basepoint 

p. We point out that  a simple estimate using the triangle inequality on the 

Poincar~ series shows that  

lim sup log c(x) [ -< h(gL) 

always holds. In the case when L is compact,  c(x) descends to a smooth (and 

hence bounded) function on L, so the left hand side is zero. 

As we will see later, a sufficient condition for this Patterson-Sullivan condition 

in more geometric terms is that  for all x C L, 

lira sup lira sup log(Vol S(x, R)/  Vol S(y, R)) < h(gL), 
d(x,y)-~ Ft-~ d(x, y) 

where the outer lim sup runs over all sequences of y E L, tending to the boundary. 

We will need later (in constructing the natural  map) that  the measures #x 

do not have atoms. Clearly it is enough to check this for vx. For this, take a 

sequence x,~ along a geodesic ray with endpoints x and 0, and (2.3) shows that  

= f e . . . .  >_ 
.to L 

= eh(OL )a(x ,xn  ) Ii x (0 ) .  

If 0 is an a tom of v~, then u~,,(OL) has exponential growth rate h(gL), contra- 

dicting the assumption that  L is a Patterson-Sullivan manifold. 

Similarly, for Patterson-Sullivan manifolds we can show that  v~ (and hence 

#x) is supported on all of OL. For if not, then take a sequence xn converging to 

a point in the complement of the support.  Since the complement is open, for any 

c 0£, in the support of vx, there exists a constant C > 0 and N > 0 such that  
for n > N, e -h(gL)B(x'x"'~) ~ Ce -h(gL)d(x'x'). Hence, 

Pxn 
do L 

However, this exceeds the allowable decay rate for these measures on Pat terson-  

Sullivan manifolds. 

Remark: The above suggests an equivalent definition of a Patterson-Sullivan 

manifold as a negatively curved manifold L with a choice of uniform tiling on 

its universal cover such that  the induced Patterson-Sullivan measures have full 

support  and no atoms. 
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2.1. Examples: It  is easy to see from the definition that  any manifold which is 

locally a rank one symmetric space off of a compact set is a Patterson Sullivan 

manifold. 

We will now construct some examples of foliations (N, FN) with transverse 

quasi-invariant measures v such that  u-almost every leaf is a Patterson-Sullivan 

manifold. 

Assume for the moment that  for almost every leaf L E -~N and any x E L, 

there exists constants C3, C4 > 1 such that  

Vol s(~, R) Vol S(x, R) 
(2.5) 63 e-Sd(x'p) < l iminf < l imsup ~-~, wT---~  < C4 e'~d(x'p), 

- R - * ~  V o l  S(p ,  R)  - n-~oo VOL ~ ( p ,  ~ )  - -  

w h e r e  p E L is the arbitrarily chosen basepoint and 5 < h(gn). From 2.5, it 

follows that  there exists R (depending on x) such that  

(2.6) Vol(S(p,r))~C3 e-Sd(x'p) ~ Vol(S(x,r)) 2C4 Vol( S(p, r) )e ~d(x,p), 

for all r > R. 

We will show that  for every x E L there are constants C5, C6 such that  

Cse -~d(~'p) < c(x) <_ C6e ~d(~'p), 

which implies that  L is a Patterson-Sullivan manifold. 

Notice that  from the definition of e(x) and the choice of the sequence si, 

lim v~' (0L) = lim g~ (x) 
s~-~h(gL )+ s~--*h(gL )+ gs~ (P) " 

c(x) = 

Therefore 

c(x) = lim g,,(x) 
~,-~h(gL)+ g~, (p) 

< lim 
si---~ h(gL)+ 

(Clef,c2)2 f o  q(t) e-s't Vol(S(x, t))dt 

= (Cle h(gL)C~) 2 

= Cleh(gL)c~) 2 

<_ Cleh(gL)C~) 2 

fo  q(t) e-~t Vol(S(p, t))dt 
lim So q(t) e-~`tV°l(S(x,t))dt 

~,-~(~)+ fo  q(t)e-s,* Vol(S(p, t))at 

lira f R  
si--~h(gL) + f ~  

lim f R  
s~--+h(gL ) + 

c l  eh(gL )c2 ) 22C4e~d(~,p) = 

q(t)e -s't Vol(S(x, t) )dt 
q(t)e -8't Vol(S(p, t) )dt 

q(t)e-*~t2C4 Vol(S(p, t) )e~a(x,V)dt 
J ~  q(t)e -s~t Vol(S(p, t) )dt 

C6eSd(x,P), 

from (2.6) 



Vol. 128, 2002 MINIMAL ENTROPY RIGIDITY 231 

where the fourth line holds because the integrals from 0 to R are bounded as 

s approaches h(gL) while the integrals from R to oc diverge. The inequality 

Cse -~d(x'p) < c(x) follows in the same manner, finishing the claim that  L is a 

Patterson-Sullivan manifold. 

Therefore it is sufficient to find examples where condition (2.5) is satisfied. 

Suppose for some quasi-invariant measure v almost every leaf L has a group 

GL acting on ], by isometries with respect to the metric gL. If GL has a compact 

fundamental domain on ],, then we claim condition (2.5) is satisfied. To see this 

we observe that  the ratio 

Vol S(y, R) 
f(x, y, R) - Vol s(x, R) 

is continuous in x and y and bounded from above and below independently of R. 

Since it is invariant under the action of Gn on the first two coordinates, f(x,  y, R) 
is bounded independently of x and y. The claim follows. 

Examples of such foliations with cocompact group actions include ones where 

v almost every leaf is a compact of negative curvature. Also, any foliation 

with v almost every leaf a homogeneous space of negative curvature satisfy the 

Patterson-Sullivan condition. Given a product of rank one symmetric spaces 

X = X1 x ... x XN where Xi is one of H "~ , CH TM , Q]R n~ , or Ca]HI 2, then for cer- 

tain combinations of factors there always exist irreducible cocompact lattices in 

Iso(X) (see Theorem 9.2.6 in [Eb96]). In that  case, F \ X  is nontrivially foliated 

by the negatively curved leaves corresponding to the factors Xi. More generally, 

for any Lie group G of noncompact type and a closed subgroup H and for any 

uniform lattice F of G, if a closed subgroup Z C G is such that  Z/(H N Z) 
has negative curvature in the metric induced from a left invariant metric on 

G/H, then locally homogeneous space F\G/H is foliated by the left cosets of 

Z/(H (q Z). By the above, these leaves will be Patterson-Sullivan manifolds. In 

the case of a noncompact semisimple group G and a maximal compact subgroup 

H,  the image in F\G/H of any rank one simple Lie subgroup generates such 

a foliation by isometrically embedded negatively curved leaves. Several totally 

geodesic examples of such subalgebras are described in Section 2.20 of [Eb96]. 

These arise as Lie triple systems. There are many other rank one subalgebras 

which are only isometrically embedded, but nevertheless give rise to foliations of 

F\G/H by Patterson-Sullivan manifolds. 

It  is clear that  compact perturbations of the previous examples of foliations 

preserve the Pat tersomSull ivan property provided that  the perturbat ion is re- 

stricted to a set where the leaves in the support  of v do not recur infinitely often; 
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in other words, when the perturbed geometry on each affected leaf remains lo- 

cally symmetric off a compact set. More general perturbations of the foliations 

will not be of this type of course, since they will affect the asymptotic geome- 

try of large spheres, and it remains an open question whether they satisfy the 

Patterson-Sullivan condition. 

3. T h e  natura l  m a p  F on  P a t t e r s o n - S u l l i v a n  mani fo lds  

In this section we define the natural map and prove Theorem 2. Recall from the 

introduction that we are assuming that (L, gL) is a Patterson-Sullivan manifold 

and f :  L -+ X is a homeomorphism from L to a negatively curved manifold 

(X, go) whose lifts to the universal cover ]: L -+ X are quasi-isometrics. (In §4 

we show that  this is true in our foliation situation.) Given a lift ] ,  it extends to 

a homeomorphism ] between the boundaries 0L and 0)(. Recall that we chose 

a basepoint p E L and defined Patterson-Sullivan measures #~ in terms of the 

basepoint. By pushing forward the ~ on 0L we obtain new measures ] .#x on 

)~. Let B(y, O) = B(p, y, 0) be the Busemann function of y E ]- at 0 E 0L with 

respect to the basepoint p on (L, gL), and similarly let Bo(y, 0) = Bo(](p), y, 0) 
be the Busemann function on (_~, go) with respect to the basepoint ](p) (which 

by abuse of notation we will also denote by p). For x E L, y E )~ define the 

function 

B(x,y)  f[ = £ 
JO~ L 

Using the convexity of the Busemann function, one can show ([BCG96], Theorem 

3.1) that for fixed x, the function y ~ B(x, y) has a unique critical point in )( 

which is its minimum. 

We can now define on the universal covers a map/}:  L--+)~ by 

/~(x)d--efthe unique critical point of B(x, .). 

Since for any two points Pl,p2 C X, Bo(pl,y,O) = Bo(p2,y,O) + Bo(Pl,p2,0), 
we see that /~(x, .) only changes by an additive constant when we change the 

basepoint of Bo. Also, B(x, .) only changes by a multiplicative constant when 

we change the basepoint in the definition of #~. Since neither change affects the 

critical point of B(x, .), -P is independent of choice of basepoints. If FL and Fx  

are the discrete groups of deck transformations of the universal covers ~,-+L and 

)~-+X respectively, then x ~-~ #x and Bo are FL-equivariant and Fx-equivariant 

respectively, and ](~x) = p("/)](x), which implies that F(~/x) = p(~/)/~(x), where 
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p: FL-~Fx is the isomorphism between the fundamental groups induced by the 

homeomorphism f .  Hence _~ descends to the n a t u r a l  m a p  F: L--+X which is 

known to be C 1 (see [BCG96]). 

The proof of Theorem 2 relies on the following two key lemmas. 

LEMMA 3.1: The map F is proper. 

Proof If not, then there would exist a sequence of points x,~ tending to ~ E 0L 

such that/>(x,~) tends to a point z E ~7. Explicitly, the/~(x,~) satisfy 

min B(x~, y) = ~i~ Jof L Bo(y, ](O))d#xn (0) 
yEX 

= f Bo(-F(xn), f(O))d#x~ (0) = 13(x,~, [~(xn)). 
go L 

Our approach is to construct a sequence of points y,~ E )(  such that 13(xn, yn) < 
B(xn,/>(x,~)), contradicting the definition of/>. Let 0 < a < 1 be a constant such 

that 
I log c(x) 

limsup d(--77~.x] < 5h(gL). (v, x) 

Such a 5 exists because L is a Patterson-Sullivan manifold. Consider the 

complementary sets 

and 

A~a= {0 E OLIB(x,~,O) <_ ad(p,x, d },  

{0 OLlU(xn,O) > ad(v, xo) }. 
First we show that limn-+oo A <a = {~}, i.e., any sequence of points zn E A <6 

converges to rl. Fix any horosphere H containing p in L tangent to r ¢ ~? E 0L 

and let hn be the unique point on H closest to x~. Then since xn converges to ~, 

it follows that h,~ converges to a point h E H.  Notice that B(r, x~) = d(H, x~) 
d(h, x~) for large n. By the triangle inequality, d(p, Xn) <_ d(h, x,) + d(p, h). 
Hence there is an N such that B(r, xn) > 5d(p, Xn) for n > N. This implies that  

for a l l n > N , r ~  <6 A~ , which completes the claim. 

Let r/n be the endpoint of the geodesic ray starting at the origin p E i- 

and passing through x , ,  and set r,~ = ](rln). Notice that r,~ E ] (A <a) since 

B(xn, rl~) = -d(p,x~). For any 0 E 0X, let "Y0 be the unique geodesic ray 

between the origin p E X and 0. Set 

t,~ = sup{t: do('ye(t),%.(t)) _< 1 VO E f (A<~)}. 
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Since the sets A <6 shrink down to  ~ as n --~ oc and f is a homeomorphism,  
- < 6  the sets f ( A ~ )  shrink down to f(~) .  From this one sees easily tha t  tn -+ cc as 

n --~ ec. Let yn = 7 ~ ( t n ) ,  and notice tha t  do(p, yn) = tn, so do(p, yn) --+ c~ as 
- < 5  -~ ~ ,  a fact we will use later. Choose 0n e f ( A ~ )  such that Bo(y~, On) = 

max0c:(A~ ) Bo(Yn, 0). 
Since the horosphere Hn = (Bo)-t(  ", 0n)(0) is a C 2 limit of geodesic spheres, 

the sphere S(7o~(tu), tn) about  3'0~ (tn) of radius tn is contained in the interior 

of the horoball  with boundary /am.  Also, Yn is in the interior of the closed ball 

about  70~ (tn) of radius t~. By the triangle inequality, 

do(yn, t-Ln) >_ do(Yn, S(~/o~(tn),tn)) >_ tn - do(')'o~(tn),Yn) >_ tn -- 1. 

By definition of the Busemann  function, Bo(yn, On) = -do(yn, Ha) <_ 1 - tn, and 

by the choice of On we can estimate 

/A - fA -- ~ ) # ~ '  ~ )" 
<~ Bo(y~, f(O))d#x~ < (1 - tn) <~ d#~,, = (1 t ' :A <6'  

Also, Bo(yn, f(O)) < do(p, Yn) = tn for any O, so 

fA t >5 Bo(un,/(O))d,~o < nmo(A~ ). 

• :A <6~ = (1 (A>~)), summing gives Since t ~  k ~ ) - #x~ 

< 1 - tn + (2tn - 1 ) # ~  (A>6). 

Lastly, we show tha t  #~,(A,~>6)--+0 as n ~ e c .  By (2.4) and since c(p) = 1, 

# ~  (A>6) -- fB(~,,O)>~g(p,~) exp{-h(gL)B(Xn,c(x~) O)} d#P(O) 

< exp{-fh(gL)d(p, xn)} #p(A>6 ) 
- c(~n) 

< exp{-hh(gL)d(p, xn)} 
- ~(~ . )  , 

and the last quant i ty  goes to 0 as n ~ o c  by the choice of 5. 

Since tn--+ec as n--+oc, we conclude tha t  limn-+o~ B(Xn, Yn) = - e c .  However, 

we assumed tha t  F(xn) converges to z, hence for any e > 0 and all sufficiently 

large n, the continuity of Bo and the estimate Bo(z, O) >_ -d(p, z) imply 

t3(x~, ? ( x n ) )  > t ~ ( ~ ,  z )  - ~ > - d o ( p ,  z)  - ~ .  
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The last term is bounded, which contradicts the minimality of /}(x~)  since we 

have B(x~, F(x~)) < B(xn, y,~). ' 

LEMMA 3.2: /W extends continuously to the homeomorphism f on the boundary. 

Proof: If not, then by Lemma 3.1 there exists a geodesic 7 in ]. and a sequence 

x~ = 7(t~) converging to ~ E 0], such that /}(x~) converges to f0?) E 0)(  for 

some ~7 ¢ ~ E 0I.. 

Consider 

A+o,,~={OEOL Bo(F(xn) , f (O))>O},  

Ao>,~ : {OE OL Bo(F(x~),f(O))> 5do (p,F(xn)) } ,  

A~,.={oco~ .o(~(~.),f(0)) < o}. 

and 

We will show that B(xn,~'(xn)) is nonnegative and derive a contradiction. 

Recall from the definition of Bo that for all 0 E 0L, 

do(p, F(xn)) >_ Bo(F'(x,~), f(O)) > -do(p, _f'(x,~)). 

From this we can estimate that for all n, 

'(Xn,~(X~)) a £ .o(~(x~),j(0))d.x,. + £ -o(P(xo),f(0))+xo 
o,,, o>,~ 

> _ { ' ~ { ' ~  (A>5~ 

= do (p, ~(x°)) (,.~o (Ao>~) - .~° (a;,~)) 

As in the proof of the previous lemma, lim~_+~¢ Ao>,~ = 0L \{~/} and f~,~ A~,~ 
>5 = {~7}- Since eventually ~ E Ao, n, one can check that #Xn does not tend to 

(A >5 ~ 1 and the Dirac measure concentrated at 71. It follows that limn #x~. o,,~, = 
limn #xn (A~,n) --- 0. In particular, for sufficiently large n, 

6lax (A >5 ~ ° ,  o,~J > m~ (A;,~), 

which by inequality (3.1) implies that B(xn, F(x,~)) > O. However, in Lemma 

3.1 we showed the existence of a sequence Yn such that B(xn, yn) tends to -~c ,  

contradicting the minimality of F.  I 

Here we restate Theorem 2 for the convenience of the reader. 
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THEOREM 3.3: Let L be a Patterson Sullivan manifold and f:  L -+ X a homeo- 
morphism from L to a negatively curved manifold such that some lift f:  L -+ 
is a quasi-isometry. For [7: L --+ X the natural map as defined above, [2 is a 

proper surjection. 

Proof of  Theorem 2: By the previous lemma we may treat  /r  as a continuous 

map from L U 0]~ to )(  U 0_~, i.e., a map from a closed topological ball to another 

closed ball. But any such map which has non-zero degree on the boundary is 

surjective. | 

4. T h e  n a t u r a l  m a p  on  t h e  l eaves  of  a c o m p a c t  fo l i a t ion  

We now return to our foliation setup. For the remainder of the paper, 

(L, gL, dL) is a leaf of (N,~'N) and (XL,go, do) is its image under the leaf- 

preserving homeomorphism f :  (N, ~'N) --~ (M, ~'M) which we have assumed is 

C 1 when restricted to leaves with transversally C o leafwise derivatives. Our goal 

is to construct the natural  map F: L --+ )(L and apply Theorem 2 to it. For 

this we need to know that  the lifts of f to the universal covers extend to bound- 

ary homeomorphisms at infinity; this will hold once we show that  the lifts are 

quasi-isometrics. 

LEMMA 4.1: The restriction of f:  (N, ~ ' N ) - - + ( M ,  ~Z'M) to each leaf is a quasi- 
isometry. 

Proo~ Consider any two sequences of points x~, yi in a fixed leaf L such that  

dL(Xi, yi)---~O in L. By compactness of N,  after passing to convergent subse- 

quences we may assume xi and Yi both converge to a point p. We conclude 

from the continuity of f that  f (x i )  and f(Yi) converge to the point f(p). Since 

f is leaf preserving, f(x~) and f(Yi) must eventually lie in the same plaque 

so do(f(xi),  f(y~))~O. By applying this argument to f - 1  we conclude that  

dL(Xi, yi)--+O if and only if do(f(xi),  f(yi))--+O. 
Suppose for some pair of sequences xi, Yi E L we have 

do(f(x ), 
lira sup 

i dL (xi, Yi) 
~ (:X:) 

and let as be a minimizing geodesic pa th  in L between xi and y~. Assume that  

dL(Xi, Yi) always exceeds a fixed constant c. By considering points of maximum 

dilation, for any numbers ci <_ dL(xi,yi) there exist points Pi,q~ E as with 
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dL (Pi, qi) = Ci a n d  

do(f (pal, f (qi) ) >_ cido( f (xd, f (y~) ) >_ ec~ d°(f  (xd' f(y~)). 
dL (xi, yi) 

Since we assumed 

choosing 

lira sup do(f (xi), f (Yi) ) 
i dL(Xi, Yi) = oo, 

{ dL(xi,y ) } 
ci = rain dL(x~,yi), do(f(xi) , f(yi))  

implies that there is a subsequenee of the Pi,qi such that dL(Pi,qi)--+O and 

do(f(pi), f(qi)) >_ ~. This contradicts our earlier result, so 

do(f(xi), f(Yi)) lira sup 
i dL (Xi, Yi) 

must stay bounded when dL(Xi, Yi) > e. As a consequence, 

K-ldo( f (x ) ,  f(y)) < dL(x, y) 

for dL (x, y) >_ ~. By considering what happens to the complement of Bdc (X, ~) for 

fixed x, it follows that f(BdL (X, ~)) C Bdo ( f (x) ,  Ke); i.e., whenever dL(x, y) < 
then do(f (x), f(y)) < Ke. Hence for all x, y E L, 

-e  + K- ldo( f (x ) ,  f(y)) < dL(X, y). 

The case when 
dL (xi, Yd 

lim[upo do(f(xi), f(Yi)) O0 

can be treated analogously by using f - 1  to reverse the situation. This yields 

dL(x,y) < Kdo( f (x ) , f (y ) )  when do(f(x) , f (y))  > e. Again showing that for 
x, y E L, 

alL(X, y) < gdo( f (x ) ,  f(y)) + e. | 

PROPOSITION 4.2: Any lift ]: L--+f(L of the restriction of f to a leaf is a 
suzjeetive quasi-isometry between the universal covers. 

Proof: We will use a set of sufficient conditions given by Y. Minsky. Since 

f: L--+X is a continuous map between complete, locally compact, connected 

path-metric spaces, by Lemma 4.4 of [Min94] we need only verify the following 

four criteria: 
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Q1. The map f is a proper, surjective, homotopy equivalence. 

Q2. The map f is a (K, e) quasi-isometry, for some K _> 1 and e _> 0. 

Q3. Any lift ] :  L-+XL is Lipschitz in the large. 

Q4. For every B > 0 there exists an A > 0 such that, if x C L and fl C XL 
is a loop through f(x) of length 1xL (fl) < B, then there is a loop a C L 

through x with li(a) < A, and f(a) is homotopic to/3. 

Condition Q1 holds since the restriction of f to L is a homeomorphism. Con- 

dition Q2 is the statement of Lemma 4.1. Since we assumed f is leafwise C 1 

and the leaf metrics are transversally continuous, the compactness of N implies 

that the derivatives of f ,  and hence ] ,  are bounded, yielding Condition Q3. It 

remains to verify Condition Q4. 

Assume by way of contradiction that there is a sequence of loops /3i in the 

leaf XL with length less than some fixed B such that all loops ai in L with 

f ( a i )  in the same homotopy class as the ~i have 1L(ai) --~ ~ .  In particular, 

we may assume that ai is a piecewise smooth curve through xi which is the 

shortest closed curve in its homotopy class, and by choosing a subsequence that 

li = length(ai) > i-+oc. Note that the injectivity radius of XL is bounded below 

by some constant 1 > C > 0 since plaque sizes are bounded on M. Chop ~i into 
i pieces i {Pj}j=I, each of length 

length(fli) 
{~i-- 

i 

which goes to zero as i--+cx) since length(Si) < B. We claim that for some j ,  

diam(f-lpj)  >_ C. For if not, let aj, aj+l be the endpoints of Pj, and notice that 

d( f - la j , f - la i+l )  <_ diam(f-lPj) < C for each j .  Let cj be the unique mini- 

mizing geodesic arc between f - 1 ( a  j) and f -~ (a j+ 1), which we note is homotopic 

to f - ]P j  for i large enough. Then length(cj) _< d(f- laj ,  f - laj+l)  < C implies 

that 
i 

E l e n g t h ( c j )  < Ci < Cli < li, 
j=l  

and so the broken geodesic cl U c2 U . . .  U cj is a curve through xi which is 

homotopic to ai,  but strictly shorter than it, a contradiction. 

We conclude that for each i there is a number j(i) < i and a piece Pj(i) of 

~i with diam(f-lPj) >_ C. Taking limits in the compact manifold M, there is 

a subsequence of the/~i such that l imi_~  Pj(i) is a single point, while the same 

subsequence of f - 1  (Pj(i)) has diameter bounded away from zero. However, this 

contradicts the fact that f is a homeomorphism, verifying Condition Q4 and the 

proposition. | 
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Theorem 2 now tells us that  the natural  maps constructed leafwise on (N, ~'N) 

are surjective. We combine these leafwise natural  maps into a global map F: 

N---+M. Since f was assumed to be a bijection between the leaf spaces of.~'M and 

~7N, F is as well. Because F is defined in terms of leafwise Busemann functions, 

the fact that  horospheres are the continuous limit of geodesic spheres in each leaf 

implies by transverse continuity of the metrics that  F is the limit of continuous 

functions on M, and hence is measurable. We summarize with 

COROLLARY 4.3: The map F: (N, YN)-4(M,.~M) is a measurable foliation- 

preserving surjection which is C 1 when restricted to leaves. 

5. P r o o f  of  t h e  M a i n  Theorem 

Recall that  the foliation (N, ~'N) possesses a holonomy quasi-invariant measure 

u and d#N is the globally defined and finite measure given locally by du × dg i .  

The push-forward measure F,u  is the measure Uo referred to in the statement of 

the Main Theorem. I t  is holonomy quasi-invariant, and so on M we have the 

globally defined and finite measure d#M given locally by d#M -~ dF, u × dg o. 

When u is actually holonomy invariant, then in fact Vo = F,u -- f , u  (since f and 

F are homotopic), and so in this case the measure Uo can be described without 

reference to the natural  map F.  

Our first ingredient is a foliated version of the coarea formula from geometric 

measure theory. 

PROPOSITION 5.1 (Foliated coarea formula): Let Jac F be the leafwise Jacobian 

o f f  and p( F, y) -- ~ { F  -1 (y)} the leaf-wise preimage counting function (possibly 

infinite). Then 

fN I JacF(x)l .N(x)= p(r, 
U, "~ Proof: Recall that  ( i}i=l is a covering of N by flow boxes with local cross 

sections Ti. We first indicate why we may assume without loss of generality that  

F restricted to each such Ti is injective. Let {ti} be an infinite set of distinct 

points in T i n  L. Since the plaques have leaf-wise inscribed diameter bounded 

from below away from zero and the points tj lie in different plaques, the points 

tj are unbounded in the metric on the leaf L. From Lemma 3.2, F cannot be 

constant on such a set of points tj. It  follows that  if Fj T~ is not injective, then we 

may assume that  Ti is a finite union of open sets on which F is injective. These 

open sets naturally introduce a subcovering of the flow box Ui by sets with a 

product structure. Taking all such sets over all i _~ m, we get a finite refinement 
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of our covering of N by flowboxes (which we continue to write as {Ui}'~=l) for 

which the restriction of F to the local cross sections Ti is injective. 

Now we let {ui}ml (resp. {Oj}}=l) be a covering of N (resp. M) by flow 

boxes, Ti (resp. Sj) a local cross section (i.e., a transversal contained in Ui (resp. 

Oj) with one point on each plaque), and {koi}i~= 1 (resp. {(I)j}}=l) a partition of 

unity on the atlas of flow boxes {ui}m_l (resp. {Oj}}=,). Also, when t e Ti, we 

denote by Lt the plaque passing through t, and for s C Sj, L j denotes the plaque 

of Oj through s. We prove the coarea formula first on a single flow box Ui in 

(N, ~'g). By first applying the usual coarea formula to the plaques, and then 

using change of variables, we get that 

/T~ ~ q2i(x)lJacF(x)ldgL(X)dv(t) 

fTi fF(Lt) ~ kOi(x)dg°(y)dv(t) 
~e {Fj-: (y)} 

"-~ /F(Ti) /F(LF_I(s) ) ~ ~i(x)dgo(y)dF*u(s). 

Now we break up the inner integral over all flow boxes z {Oj}j= 1 in M, and rewrite 
the previous line as 

where 

l 

---- j~l fF(Ti) IF(iF l(s))nOJ ~J(Y) ~ l~i(x)dg°(y)dF*~(s)" = xeTs(y) 

F - 1  

Since F is proper on each leaf, F(Ti) is finite in each plaque of Oj. Hence one 

can show (via a Borel selection process) that there are measurable sets W k with 

at most one point in each plaque of Oj such that F(Ti)NOj = Uk>l W? (disjoint 

union). The last line then becomes 

l 

j = l  _ (L F -  t (s))nOJ xETs (y) 
1 

= fF  j(y) vi(x)e.M(y) 
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= SF(U~) 
E ~i(x)dpM(y). 

Summing over all flow boxes Ui gives 

. 

m 

= SMP(F,y)d#M(y). I I  

We will also need the following important proposition from [BCG96] which 

gives an estimate on the Jacobian of the natural map; it applies in our case since 

the proof does not rely on the compactness of L. 

PROPOSITION 5.2 (Proposition 5.2 of [BCG96]): Fix a leaf L. Recall that h(gL) 
and h(go) are the volume growth entropies of L and f(L) with respect to the 
metrics gL and go. Then 

1. I JacF(x)[  < [h(gL)~n for every x e L, and 
- \ h(go) ] 

2. if for some x c L, I JacF(x)] = (h(gL)~'~ then the differential dFx o f F  at t h(go) ] ' 

x is a homothety of ratio h(gL) 
h(go) * 

Proof of the Main Theorem: Let (ga, JYN,~,/]c~)c~EA be the ergodic decomposition 

of (N,-~N, v) and (Ms, S-M~, f ,  ua)~eA the corresponding ergodic decomposition 

of (M, 5VM, f ,v) .  (We use here that the foliation defines on a cross section T a 

countable equivalence relation in the sense of [FM75]. This equivalence relation 

decomposes (up to v measure zero) into a continuous sum of ergodic equivalence 

relations, and v is a continuous sum • = fA u~da (see [FM75], §3). By trans- 

verse quasi-invariance, this induces a decomposition of (N, S'N, u) into ergodic 

components.) 

By Corollary 4.3 the natural map F is leafwise surjective. Therefore, applying 

Propositions 5.1 and 5.2 to the foliations of the ergodic components, we obtain 
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the inequalities 

JM~ d#M,~ <-- /M, P(F,y)d#M,~ = /N, 'JacF(x)ld#N,~ 

- \ h~M~ (go) ] dUN,, 

where d#N~ is locally dgL X dyo~ and similarly for d#M,~. Thus 

hjM~ (go)na~Mo <_ hjN. (9L) .No 

since h I M. (go) n is constant on Ms. Integrating with respect to c~ gives the desired 

result that  

(5.1) fM h(g°)°e"M -< £ h(g )°e.N 
In the case that equality holds in (5.1), we actually have that 

for almost every c~ E A. 

Since IJacFIN ~ < ( h~N (aL)~  
- -  \hlM,~(go)] and 

< (hlNo(g )  

we see that  I J a c F [ N  ~ (h~Nc~(gL)) n = ~.hlM.(go) #N -almost everywhere and hence by 

Fubini-Tonelli, I JaCFIN" (hlN (gL)~ ~ -= \ hi M. (go)} ' dgL-almost everywhere, on va-almost 
( h ~  (9~)~ ~ 

every leaf. Since 1Jae FIN " is continuous on each leaf, it must be \ hi M, (9o) ] on 

va-almost every leaf. We conclude by Proposition 5.2 that for v~-almost every 
( h ~  (9~)~ ~ 

leaf in N~, dF~ ,  is a homothety of ratio \hiM, (go)] " Since v is a continuous 

sum of the v~, this implies that  on #N-almost every leaf, dF is a homothety of 

[ h(gL)~ , concluding the proof. | ratio k h(go) ] 

6. Applications 

From the Main Theorem we obtain the following corollaries, in parallel with some 

of the applications found in [BCG95]. 



Vol. 128, 2002 MINIMAL ENTROPY RIGIDITY 243 

COROLLARY 6.1 (Foliated Mostow Rigidity): Let (N, .T'N) and (M, ~M) be two 
continuous foliations of compact spaces such that ~ g  possesses a finite transverse 

invariant measure y. Let f: M - + N  be a foliation preserving leafwise C 1 home- 
omorphism and assume that almost all leaves L (resp. f ( L ) )  in the support of 

v (resp. f . v )  carry metrics locally isometric to a fixed n-dimensional symmetric 

space (rio, go) (resp. (51, gl) ) of negative curvature and dimension greater than 

2. Then u-almost every leaf (L, go) is homothetic to ( f (L) ,  gl). 

Proof  Note that  because the leaves are symmetric spaces, they are Pat terson-  

Sullivan manifolds, so we can apply the Main Theorem. By switching the roles 

of (N, JZg, u) and (M,J:M, f ,~) ,  from the Main Theorem we obtain the two 

inequalitites 

and f 
Thus we are in the case of equality, and so the desired conclusion follows from 

the Main Theorem. | 

Remarks: 

1. This yields the usual Mostow Rigidity Theorem when both foliations consist 

of a single compact leaf. 

2. Pansu and Zimmer [PZ89] have also obtained a foliated version of Mostow's 

rigidity theorem, although their assumptions, conclusion, and method of 

proof all differ from ours. 

Now, letting Ric denote the Ricci scalar curvature (i.e., the trace of the 

curvature tensor) we obtain 

COROLLARY 6.2: Assume the hypotheses of Theorem 1, except that the leaves of 

(M,-~M) are all locally isometric to real hyperbolic space of  constant curvature 

-1 .  Then 

Ric(gL) ~-- - - (n- -1)gL ~ fMdl tM ~ / N d , N  • 

Moreover, if (M, -~M) is ergodic, then equality holds if and only i f  almost every 

leaf of (N, ~'N ) is locally isometric to real hyperbolic space of constant curvature 

--l .  

Proof: Bishop's comparison theorem gives us that  

R i c 0 L )  > - ( n  - 1)gL h(g ) < (n - 1) = h(go). 
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The conclusions now follow easily from the Main Theorem. Note that we must 

assume ergodicity for the equality case so that  

Gromov has defined an important invariant, the minimal volume of a space 

Y. More precisely, if K(g) denotes the sectional curvature of the metric g, then 

minVol(Y) = inf{Vol(Y, g): tK(g)l < 1}. We can make a similar definition for a 

foliated space (M, ~M, v) with holonomy invariant measure, namely 

minVol(M, ~'M, u ) =  inf{/M dttg: IK(g)l < 1} 

where the infimum is over all leafwise Riemannian metrics g with sectional 

curvatures K(g).  Then we get the following 

COROLLARY 6.3: With the same hypotheses as in the previous corollary, 

minVol(M, ffSM, P) ~ ]M d#M. 

Lastly, we extend a corollary obtained by Besson-Courtois-Gallot about 

Einstein metrics (see Theorem 9.6 of [BCG95]) to the foliated case. 

COROLLARY 6.4: If  .~U is & continuous 4-dimensional foliation of a compact 

space M with a finite transverse invariant measure ~ such that each leaf L is 

endowed with a real hyperbolic metric go, then (up to multiplication by a con- 

stant) that is the only family of negatively curved Einstein metrics admitted by 

the foliation. 

Proof: Let (N, FN) be the same foliation of M but with gL another family 

of Einstein metrics on the leaves L. We may split the Pfaffian P f ( K L )  of the 

leaf-wise curvature tensor KL into three components as 

P f ( g n )  = [WgL[ 2 - [ZgL[  2 + [ U~LI 2 

(see p. 161 of [Bes87]) where J Wg L I is the operator norm of the Weyl tensor Wg L 

of the metric gL, I ZaLI = C11Ricci(gL)- ~ scal(gL)gL I for some constant C1 

where Ricci and scal are the Ricci tensor and scalar curvatures respectively, and 

lastly lUg L ] = C2 scal(gn) for another constant C2. Using the Connes foliated 

Gauss-Bonnet theorem [Con94] we have 
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where X(~N) is the "average Euler characteristic" of a leaf of N,  a topological 

invariant for the foliation 5VN. 

By compactness of M we may renormalize the metrics gL such that  Ricci(gL) ---- 

--CLgL where CL > (n - 1). Then using the above formula and the facts that  

Zg = 0 for any Einstein metric g and Wgo = 0 because go is locally conformally 

fiat, we obtain 

IfN ~(~:N) >_ ~ I UgLI2d~N >_ 8~ 2 JMC2d#N 

_> g~-~2 n ( n  - 1) 2 d~g >_ ~ n 2 ( n -  1) 2 d~M 

- 8~ 2 [ Ugo 12d.M = X(f'M). 

We used Corollary 6.2 for the fourth inequality. Comparing both ends of the 

inequalities (and since -~M : JvN) shows that  every inequality is an equality and 

hence we are in the equality case of Corollary 6.2 which implies that  each gi  is 

homothetic to go. | 
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